Equilibrium: Dinitrogen tetroxide \rightleftharpoons Nitrogen Dioxide

Question

2 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ was heated in a container of volume $12.0 \mathrm{dm}^{3}$ and the following equilibrium established:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

At equilibrium, 35% of the $\mathrm{N}_{2} \mathrm{O}_{4}$ had dissociated. Calculate K_{c}.

Expression for $\mathrm{K}_{\underline{c}}$ and rewrite problem

$$
\mathrm{K}_{\mathrm{c}}=\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]
$$

...so we need to know the equilibrium concentrations
Let's have a look at the data we're given...

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

initial mol
2.0

0
\% remaining
equilibrium mol

Working through the example

By what amounts has each substance changed?

	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NO}_{2}(\mathrm{~g})$
ratio	1	$:$	2
initial mol	2.0		0
\% remaining	65%		
change equilibrium mol	$\underline{1.3}$		

Working through the example

By what amounts has each substance changed?

	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NO}_{2}(\mathrm{~g})$
ratio	1	:	2
initial mol	2.0		0
	65\% remains		
change	-0.7		+1.4
equilibrium mol	1.3	1.4	
equilibrium []	$1.3 / 12 \mathrm{dm}^{3}$	$1.4 / 12 \mathrm{dm}^{3}$	
	$0.108 \mathrm{moldm}^{-3}$		$\underline{0.117} \mathrm{moldm}^{-3}$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\mathrm{K}_{\mathrm{c}}=0.117^{2} / 0$	0.10	$=0.13 \mathrm{moldm}^{-3}$

Conclusions

1) Work out the amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ which has reacted
2) Using the ratio, work out the amount of NO_{2} which has formed
3) Divide by the volume to get
concentration.

Assessment

Work out the equilibrium amounts:

	$\mathrm{A}(\mathrm{g})$	\rightleftharpoons	$\mathrm{B}(\mathrm{g})$	+	$\mathrm{C}(\mathrm{g})$
ratio	1	$:$	1	$:$	1
initial mol	0.4		0		0
80% of A reacts					
equilibrium mol					

Would you need the volume to work out K_{c} ?

Answers $[A]=0.05,[B]=3.5,[C]=3.5 \quad \mathrm{~K}_{\mathrm{c}}=[B][C] /[A] \quad$ volumes do not cancel and would need volume to work out K_{c}.

