watch a video tutorial on this at <u>www.chemistry.jamesmungall.co.uk</u>

<u>Equilibrium: Dinitrogen tetroxide = Nitrogen Dioxide</u>

Question

2 mol of N_2O_4 was heated in a container of volume 12.0 dm^3 and the following equilibrium established:

 $N_2O_4(g) = 2NO_2(g)$

At equilibrium, 35% of the N_2O_4 had dissociated. Calculate $K_{\rm c}.$

Expression for K_c and rewrite problem

 $K_c = [NO_2]^2 / [N_2O_4]$

...so we need to know the equilibrium concentrations

Let's have a look at the data we're given...

	$N_2O_4(g) \rightleftharpoons$	2NO ₂ (g)
initial mol	2.0	0
% remaining		
equilibrium mol		

watch a video tutorial on this at <u>www.chemistry.jamesmungall.co.uk</u>

Working through the example

By what amounts has each substance changed?

	$N_{2}O_{4}(g)$	\Rightarrow	2NO ₂ (g)	
ratio	1	:	2	
initial mol	2.0		0	
% remaining	65%			
change				
equilibrium mol	<u>1.3</u>			

Working through the example

By what amounts has each substance changed?

	N ₂ O ₄ (g)	⇒	2NO ₂ (g)
ratio	1	:	2
initial mol	2.0		0
	65% remai	ns	
change	-0.7		+1.4
equilibrium mol	<u>1.3</u>	<u>1.4</u>	
equilibrium []	1.3 / 12dm ³	1.4 /	12dm ³
	0.108 mold	m <u>-3</u>	0.117 moldm ⁻³

 $K_c = [NO_2]^2 / [N_2O_4]$ $K_c = 0.117^2 / 0.108 = 0.13 \text{ moldm}^{-3}$

Conclusions

1) Work out the **amount** of N_2O_4 which has reacted

2) Using the ratio, work out the amount of NO₂ which has formed

3) Divide by the volume to get

watch a video tutorial on this at $\underline{www.chemistry.jamesmungall.co.uk}$

concentration.

Assessment

Work out the equilibrium amounts:

	A(g)	≠	B(g)	+	C(g)
ratio	1	:	1	:	1
initial mol	0.4		0		0
80% of A reacts					
equilibrium mol					

Would you need the volume to work out K_c ?

<u>Answers</u> [A] = 0.05, [B] = 3.5, [C] = 3.5 $K_c = [B][C]/[A]$ volumes do not cancel and would need volume to work out K_c .