Buffer Solutions Examples

1 a) What is the pH of a buffer solution containing $0.1 \mathrm{moldm}^{-3}$ ethanoic acid and 0.1 moldm $^{-3}$ sodium ethanoate? $\left(\mathrm{pK}_{\mathrm{a}}\right.$ ethanoic acid $\left.=4.75\right)$

$$
\mathrm{HA} \stackrel{\mathrm{~K}_{\mathrm{a}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{A}^{-}
$$

$$
\left.\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{H}+][\mathrm{A}-]}{[\mathrm{HA}]} \xrightarrow[{\mathrm{x}[\mathrm{HA}}]\right]{ } \mathrm{K}_{\mathrm{a}}[\mathrm{HA}]=[\mathrm{H}+][\mathrm{A}-]
$$

$$
[\mathrm{H}+]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}{[\mathrm{A}-]}<\frac{1[\mathrm{~A}]}{[\mathrm{H}+][\mathrm{A}-]=\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}
$$

$$
\mathrm{pH}=\mathrm{pKa}+\mathrm{p} \frac{\cdot[\mathrm{HA}]}{[\mathrm{A}-]}
$$

$$
=4.75-\log (0.1 / 0.1)
$$

$$
=4.75
$$

note that $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ when the concentration
of weak acid and salt is the same
b) What is its pH after the addition of $10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3} \mathrm{HCl}(\mathrm{aq})$ to $1 \mathrm{dm}^{3}$ of the solution?

How many moles of HCl are added?

This is because the base will have reacted with the H^{+}from HCl to form more ethanoic acid:

i.e. the reverse reaction in the equilibrium is favoured.

$$
\begin{aligned}
& {\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=} \\
& {\left[\mathrm{CH}_{3} \mathrm{COO}\right]=} \\
& \mathrm{pH}=\mathrm{pKa}+\mathrm{p} \frac{0.11}{1010} \\
& =4.75-\log \frac{(0.11 / 1010)}{(0.09 / 1010)} \\
& =4.66
\end{aligned}
$$

c) If $10 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3} \mathrm{HCl}$ had been added to $1 \mathrm{dm}^{3}$ of water, what would the change in pH be? (assume pH of pure water at this temperature is 7)

Moles of H^{+}added:

$$
\begin{aligned}
\text { moles } & =\frac{\text { concentration } \times \text { volume }}{1000} \\
& =\frac{1.0 \times 10}{1000} \\
& =0.01 \text { moles } \mathrm{HCl} \text { added } \\
& =0.01 \text { moles } \mathrm{H}^{+} \text {added }
\end{aligned}
$$

This is in $1010 \mathrm{~cm}^{3}$ of water ($1 \mathrm{dm}^{3}$ plus the $10 \mathrm{~cm}^{3}$ of acid solution).

Therefore the concentration of H^{+}is:

$$
\begin{aligned}
& \text { concentration } \\
& \begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\frac{\text { moles }}{(\text { volume } / 1000)} \\
& =\frac{0.01}{(1010 / 1000)} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 9.9 \times 10^{-3} \mathrm{moldm}^{-3} \\
& =2.0
\end{aligned}
\end{aligned}
$$

ore the pH has reduced from 7 to 2. This is a change of 5 on the pH scale Compare this with the change of pH in the buffer solution. The pH reduced from 4.75 to 4.66. This is a change of only 0.09 on the pH scale.

