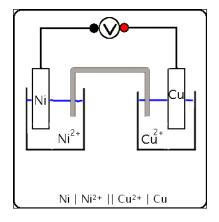
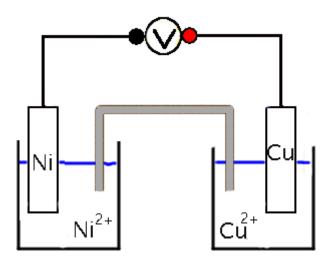

1. Representing the electrochemical cell

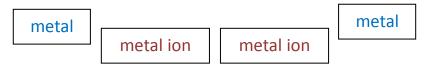
a. Examples

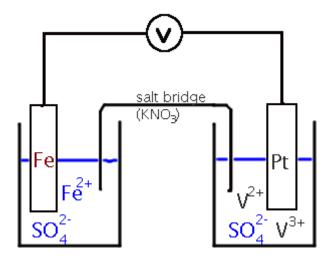
- i. Ni | Ni²⁺ || Cu²⁺ | Cu
- ii. Fe | Fe²⁺ || V³⁺, V²⁺ | Pt
- iii. Cu | Cu²⁺ || H⁺, H₂ | Pt
- iv. Pt \mid H₂, H⁺ \mid Cl₂, Cl⁻ \mid Pt
- b. Conclusions
 - i. salt bridge (||), change of state (|), use of ... | Pt
 - ii. RED | OX || OX | RED
 - iii. standard electrode potentials
 - iv. balancing electrons
- 2. More complicated half-equations written as half-cells
 - a. Examples
 - i. $O_2 + 2H_2O + 4e^- = 4OH^-$
 - ii. $2H_2O + 2e^- \Rightarrow 2OH^- + H_2$
 - iii. $MnO_4^{2-} + 2H_2O + 2e^- \Rightarrow MnO_2 + 4OH^-$
 - iv. $VO^{2+} + 2H^+ + e^- \Rightarrow V^{3+} + H_2O$
 - b. Conclusions
 - i. use of []
 - ii. use of,
- 3. Cell diagram for which E_{cell} is +ve
 - a. Which is the right-hand electrode if E_{cell} is +ve?
 - b. Example: Hydrogen-oxygen fuel cell
 - c. Assessment:

 $\begin{aligned} \text{IO-(aq)} + \text{H}_2\text{O}(\text{I}) &= \text{I-(aq)} + 2\text{OH-(aq)} & \text{E}^\circ = +0.49\text{V} \\ \text{CrO}_{4^{2-}}(\text{aq}) + 4\text{H}_2\text{O}(\text{I}) &= \text{Cr}(\text{OH})_3(\text{s}) + 5\text{OH-(aq)} & \text{E}^\circ = -0.13\text{V} \end{aligned}$

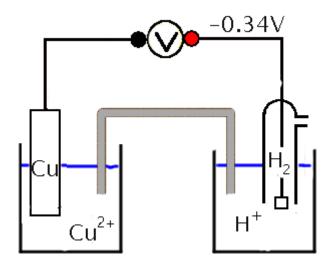

1. Representing the electrochemical cell

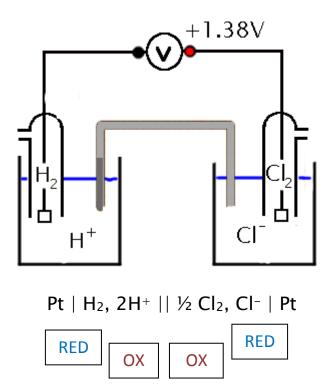

a. Examples


- i. Ni | Ni²⁺ || Cu²⁺ | Cu
- ii. Fe | Fe²⁺ || V³⁺, V²⁺ | Pt
- iii. Cu | Cu²⁺ || H⁺, H₂ | Pt
- iv. Pt $| H_2, H^+ || Cl_2, Cl^- | Pt$


b. Conclusions

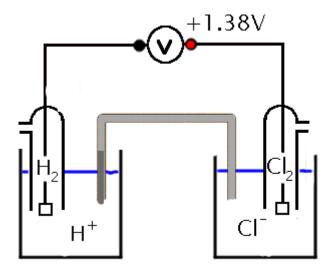
- i. salt bridge (||), change of state (|), ...| Pt
- ii. RED | OX || OX | RED
- iii. standard electrode potentials
- iv. balancing electrons
- 2. More complicated half-equations written as half-cells
- 3. Cell diagram for which E_{cell} is +ve





watch a video tutorial about this at www.chemistry.jamesmungall.co.uk

Cu | Cu²⁺ ||
$$2H^+$$
, H_2 | Pt



watch a video tutorial about this at www.chemistry.jamesmungall.co.uk

Conclusions

- i. salt bridge (||), change of state (|), use of ... | Pt
- ii. RED | OX || OX | RED
- iii. standard electrode potentials
- iv. balancing atoms and electrons

 $Pt ~|~ H_2,~ 2H^+ ~|| ~\frac{1}{2} ~Cl_2,~ Cl^- ~|~ Pt$

- 1. Representing the electrochemical cell
- 2. More complicated half-equations written as half-cells

a. Examples

- i. $O_2 + 2H_2O + 4e^{-} \Rightarrow 4OH^{-}$
- ii. $2H_2O + 2e^- \Rightarrow 2OH^- + H_2$
- iii. $MnO_4^{2-} + 2H_2O + 2e^- \Rightarrow MnO_2 + 4OH^-$
- iv. $VO^{2+} + 2H^+ + e^- \Rightarrow V^{3+} + H_2O$

b. Conclusions

- i. use of []
- ii. use of,
- 3. Cell diagram for which E_{cell} is +ve

$$O_2(g) + 2H_2O(I) + 4e^{-} = 4OH^{-}(aq)$$

OXIDISED SPECIES REDUCED SPECIES

 $[O_2(g) + 2H_2O(I)], 4OH^-(aq) | Pt$ OX RED

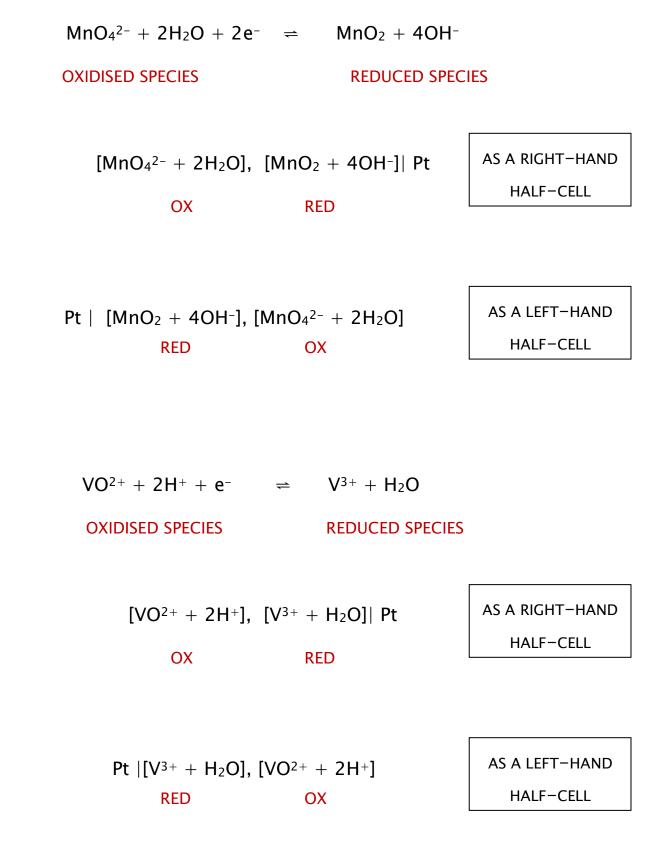
AS A RIGHT-HAND HALF-CELL

 $\begin{array}{c|c} Pt & | & 4OH^{-}(aq), & [O_{2}(g) + 2H_{2}O(l)] \\ \hline & \\ RED & OX \end{array}$

AS A LEFT-HAND HALF-CELL

 $2H_2O(I) + 2e^- \Rightarrow 2OH^-(aq) + H_2(g)$

OXIDISED SPECIES


REDUCED SPECIES

 $2H_2O(I)$, $[2OH^-(aq) + H_2(g)] | Pt$ OX RED AS A RIGHT-HAND HALF-CELL

 $\begin{array}{c|c} \mathsf{Pt} & [\mathsf{2OH}^{-}(\mathsf{aq}) + \mathsf{H}_2(\mathsf{g})], & \mathsf{2H}_2\mathsf{O} \\ \\ & \mathsf{RED} & \mathsf{OX} \end{array}$

AS A LEFT-HAND HALF-CELL

watch a video tutorial about this at <u>www.chemistry.jamesmungall.co.uk</u>

watch a video tutorial about this at www.chemistry.jamesmungall.co.uk

Conclusion: Use of [] and ,

 $A(g) + B(I) + e - \Rightarrow C(aq)$

OXIDISED SPECIES

REDUCED SPECIES

LH ELECTRODE

RH electrode

Pt | C(aq), [A(g) + B(l)] RED OX [A(g) + B(I)], C(aq) | PtOX RED

1. Representing the electrochemical cell 2. More complicated half-equations written as half-cells 3. Cell diagram for which E_{cell} is +ve a. Which is the right-hand electrode if E_{cell} is +ve? b. Example: Hydrogen-oxygen fuel cell c. Assessment: $IO^{-}(aq) + H_2O(I) \Rightarrow I^{-}(aq) + 2OH^{-}(aq) E^{\circ} = +0.49V$ $CrO_4^{2-}(aq) + 4H_2O(I) \Rightarrow Cr(OH)_3(s) + 5OH^{-}(aq) E^{\circ} = -0.13V$

Which is the right-hand electrode if E_{cell} is +ve?

the more **Positive** electrode will proceed in the **Forward** direction

this is **Reduction** and goes on the **Right** in the cell diagram

Example: Hydrogen-oxygen fuel cell

$O_2(g) + 2H_2O(I) + 4e^- \Rightarrow$		40H-(aq) +0.40	
OXIDISED SPECIES		REDUCED SPECIES	
$2H_2O(I) + 2e^{-1}$	#	$2OH^{-}(aq) + H_{2}(g)$	-0.83V
OXIDISED SPECIES		REDUCED SPECIES	

the more **Positive** electrode will proceed in the **Forward** direction

this is **Reduction** and goes on the **Right** in the cell diagram

LHS (-0.83V)			RHS (+0.40V)		
Pt [20H-(a	$aq) + H_2(g)], 2$	2H ₂ O(l) [O ₂ (g	$) + 2H_2O(I)]$, 40H-(aq) Pt	
	RED	OX	OX	RED	

Assessment

What would the cell diagram be for the cell with e.m.f. +0.62V which would occur if these two half cells were joined under standard conditions?

$$IO^{-}(aq) + H_2O(I) \Rightarrow I^{-}(aq) + 2OH^{-}(aq)$$

 $E^{\circ} = +0.49V$
 $CrO_{2}^{2}(2q) + 4H_2O(I) \Rightarrow Cr(OH)_2(s) + 5OH^{-}(2q)$
 $E^{\circ} = -0.13V$

$$CIO_{4^{2}}(aq) + 4\Pi_{2}O(l) = CI(O\Pi)_{3}(s) + 5O\Pi(aq) = -0.15v$$

 $|| [IO^{-}(aq) + H_2O(I)], [I^{-}(aq) + 2OH^{-}(aq)] | Pt$

ANSWER: D