chemistry and conventions

- 1. Introduction
 - a. REDOX, half-equations and voltage
 - b. Why do we want to measure electrode potentials?
- 2. Describing the Electrochemical Cell
 - a. Technical terms
 - i. Electrode
 - ii. Half-cell
 - iii. Salt bridge
 - iv. Electromotive force (e.m.f.), potential difference, voltage
 - v. Electrode potential
- 3. Chemical Causes and Conventions
 - a. Cause of the electromotive force (e.m.f.)
 - b. Convention of the voltmeter
 - c. What does the sign of the electrochemical cell tell about the REDOX behaviour of the half-cells?
- 4. Standard Electrode Potentials
 - a. If hydrogen is used as the reference electrode, what e.m.f. should it have?
 - b. Why does it matter which side we put the reference electrode on?
 - C. What things do we need to do consistently in order to build up a table of standard electrode potentials?

chemistry and conventions

1. Introduction

- a. REDOX, half-equations and voltage
- b. Why do we want to measure electrode potentials?
- 2. Describing the Electrochemical Cell
- 3. Chemical Causes and Conventions
- 4. Standard Electrode Potentials

REDOX, half-equations and voltage

Why do we want to measure electrode potentials?

tends to	REDOX behaviour	tends to
lose electrons		gain electrons
4		>

- quantitative reactivity series
- use to predict reactions
- make batteries

Where do you think the following would be on this reactivity series?

chemistry and conventions

1. Introduction

2. Describing the Electrochemical Cell

- a. Technical terms
 - <mark>i. Electrode</mark>
 - ii. Half-cell
 - iii. Salt bridge
 - iv. Electromotive force (e.m.f.), potential difference, voltage
 - v. Electrode potential
- 3. Chemical Causes and Conventions
- 4. Standard Electrode Potentials

© James Mungall 2010

What technical terms do we need to know?

Match the term to its description

Salt Bridge

Electrode potential

Half-cell

Cell potential

Electromotive force (e.m.f.)

e.m.f. caused by joining two half-cells together

prevents build up of charge in the solution

half of an electrochemical cell

potential energy due to build up of charge

e.m.f. caused by a half-cell relative to the hydrogen half-cell

chemistry and conventions

- 1. Introduction
- 2. Describing the Electrochemical Cell
- 3. Chemical Causes and Conventions
 - a. Cause of the electromotive force (e.m.f.)
 - b. Convention of the voltmeter
 - c. What does the sign of the electrochemical cell tell about the REDOX behaviour of the half-cells?
- 4. Standard Electrode Potentials

Cause of the electromotive force (e.m.f.)

Why does linking two half-cells cause a voltage?

Convention of the voltmeter

Why does it matter which way around I plug in the voltmeter?

Convention of the voltmeter

Why does it matter which way around I plug in the voltmeter?

What does the sign of the electrochemical cell tell me about the REDOX behaviour of the half-cells?

What does the sign of the electrochemical cell tell me about the REDOX behaviour of the half-cells?

chemistry and conventions

- 1. Introduction
- 2. Describing the Electrochemical Cell
- 3. Chemical Causes and Conventions
- 4. Standard Electrode Potentials
 - a. If hydrogen is used as the reference electrode, what e.m.f. should it have?
 - b. Why does it matter which side we put the reference electrode on?
 - What things do we need to do consistently in order to build up a table of standard electrode potentials?

If hydrogen is used as the reference electrode, what e.m.f. should it have?

Why does it matter which side we put the reference electrode on?

CONVENTION: reference electrode on the left hand side (L.H.S.)

What things do we need to do consistently in order to build up a table of standard electrode potentials?

1. Left hand half-cell into negative terminal of voltmeter

2. Left hand half-cell to be H_2 , H+

3. Standard conditions (1atm, 1moldm⁻³, standard states, 298K)

What things do we need to do consistently in order to build up a table of standard electrode potentials?

1. Left hand half-cell into negative terminal of voltmeter

2. Left hand half-cell to be H_2 , H+

3. Standard conditions (1atm, 1moldm⁻³, standard states, 298K)

What things do we need to do consistently in order to build up a table of standard electrode potentials?

1. Left hand half-cell into negative terminal of voltmeter

2. Left hand half-cell to be H_2 , H+

3. Standard conditions (1atm, 1moldm⁻³, standard states, 298K)

More commonly written in a table of reduction half-equations

		Electro	ode			Eº/ V	
-ve	reverse (←)	Zn ²⁺ Ni ²⁺ H+	+ 2e- + 2e- + e-	11 11 11	Zn Ni ½ H ₂	-0.76 -0.25 0	▲ tends to lose electrons
		Cu ²⁺	+ 2e-	#	Cu	+0.34	
		Ag+	+ e-	⇒	Ag	+0.80	
		½ Br ₂	+ e-	⇒	Br-	+1.09	tends to <mark>gain</mark>
+ve	forward (\rightarrow)	½ Cl₂	+ e-	≠	CI-	+1.38	electrons

SIGN of E° indicates bias of equilibrium

note: the number of electrons in the half-equation does not affect E^{o}

i.e.	⅓ Cl₂	+ e-	#	Cl⁻	+1.38V
and	CI_2	+2e-	≠	2Cl-	+1.38V

Glossary

Electrochemical cell	Two half-cells connected by a salt bridge
Electrochemical series	Shows the redox behaviour of half-reactions relative
	to the hydrogen electrode
Electrode	The terminal through which electric current passes
	between metallic and nonmetallic parts of an electric circuit
Electrode potential for	The e.m.f. caused by joining two half-cells together
<i>a cell</i> (cell potential)	
Electrode potential for	The e.m.f. caused by a half-cell relative to the
a half-cell	hydrogen half-cell, using a right-hand electrode
	system.
Electromotive force	I do not distinguish between these three terms. They
(e.m.f.)	all describe the extent to which there is a build up of
potential difference,	opposite charges on either side of the voltmeter.
voltage	
Half-cell	Electrode dipped into a solution of ions
Half-equation	Ionic equation showing the gain or loss of electrons of
	a species. In the electrochemical series half-equations
	are shown as <i>reductions</i> , i.e. with the electrons on the
	left hand side of the equation.
Hydrogen electrode	half-cell based upon the half equation $H^+ + e^- \rightleftharpoons \frac{1}{2} H_2$,
	and used as a reference in the electrochemical
	series
Salt bridge	Either a glass tube or filter paper saturated with K^+
	and NO ³⁻ ions. Used to link two half-cells. Ions from
	the salt bridge can flow into the half-cells to prevent a
	build up of charge within the solutions as REDOX
	reactions occur.

<u>References</u>

Andrew Hunt, *Complete A-Z Chemistry Handbook* (2003). Hodder Arnold.

Nuffield Advanced Science, Book of Data (1984). Longman.