Redox potentials, Cell Diagrams and EMF. Hydrogen-Oxygen Fuel Cell.

AIM

We are learning to:

- write cell diagrams
- work out e.m.f. of a cell from Redox potentials
- combine half-equations to write an overall equation

QUESTION

Use the following data to write the cell diagram, work out the e.m.f. and write the overall equation for the reaction of a hydrogen-oxygen fuel cell in alkaline conditions.

Half-equation		$\boldsymbol{E}^{o} / \mathbf{V}$	
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}+(\mathrm{aq})$	$+4 \mathrm{e}^{-}$	$\rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{O} 2(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+4 \mathrm{e}^{-}$	\rightleftharpoons	$4 \mathrm{OH}^{-}(\mathrm{aq})$
$2 \mathrm{H}^{+}(\mathrm{aq})$	$+2 \mathrm{e}^{-}$		+0.40
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+2 \mathrm{H}_{2}(\mathrm{~g})$	0.00	

Which half equations do we need?

Conventions

The more Positive electrode will proceed in the Forward direction...
...this is Reduction and goes on the Right in the cell diagram.

$\mathrm{O} 2(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+4 \mathrm{e}^{-}$	\rightleftharpoons	$4 \mathrm{OH}^{-}(\mathrm{aq})$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}-(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g})$

"hydrogen and hydroxide become water" "oxygen and water become hydroxide"

$$
\mathrm{Pt} \mid\left[\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}-(\mathrm{aq})\right], 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\left[\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right], 4 \mathrm{OH}-(\mathrm{aq}) \mid \mathrm{Pt}
$$

Pt | [$\left.\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}-(\mathrm{aq})\right], 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})| |\left[\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right], 4 \mathrm{OH}-(\mathrm{aq}) \mid \mathrm{Pt}$
E.M.F =

To write out full equation, re-write with more negative electrode reversed

$$
\begin{gathered}
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq}) \\
2 \mathrm{OH}-(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \\
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{OH}-(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \\
\mathrm{O} 2(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

SUMMARY

to write the cell diagram

1) the more Positive electrode will proceed in the Forward direction this is Reduction and goes on the Right in the cell diagram
2) to write out the elecrodes

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{I})+\mathrm{e}^{-} \rightleftharpoons \mathrm{C}(\mathrm{aq})
$$

OX
read as "C becomes A and B"
write as $\mathrm{Pt} \mid \mathrm{C}(\mathrm{aq}),[\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{l})]$

RED
read as "A and B become C" write as $[\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{I})], \mathrm{C}(\mathrm{aq}) \mid \mathrm{Pt}$

ASSESSMENT

What would the cell diagram be for the cell with e.m.f. +0.62 V which would occur if these two half cells were joined under standard conditions?

$$
\begin{array}{ll}
\mathrm{IO}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{I}-(\mathrm{aq})+2 \mathrm{OH}^{-(\mathrm{aq})} & \mathrm{E}^{\circ}=+0.49 \mathrm{~V} \\
\mathrm{CrO}_{4}^{2-(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}-(\mathrm{aq})} & \mathrm{Eo}=-0.13 \mathrm{~V}
\end{array}
$$

A $\quad \mathrm{Pt}\left|\left[\mathrm{CrO}_{4}{ }^{2}-(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right],\left[\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}-(\mathrm{aq})\right]\right|\left|[1-(\mathrm{aq})+2 \mathrm{OH}-(\mathrm{aq})],\left[\mathrm{OO}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]\right| \mathrm{Pt}$
B $\quad \mathrm{Pt}\left|\left[\mathrm{CrO}_{4}{ }^{2-(a q)}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right],\left[\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}-(\mathrm{aq})\right]\right|\left|\left[\mathrm{OO}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right],[\mathrm{I}-(\mathrm{aq})+2 \mathrm{OH}-(\mathrm{aq})]\right| \mathrm{Pt}$

C $\quad \mathrm{Pt}\left|\left[\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}-(\mathrm{aq})\right],\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]\right|\left|[\mathrm{I}-(\mathrm{aq})+2 \mathrm{OH}-(\mathrm{aq})],\left[\mathrm{OO}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]\right| \mathrm{Pt}$

D $\quad \mathrm{Pt}\left|\left[\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}-(\mathrm{aq})\right],\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]\right|\left|\left[\mathrm{OO}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right],[\mathrm{l}-(\mathrm{aq})+2 \mathrm{OH}-(\mathrm{aq})]\right| \mathrm{Pt}$

ANSWER: D

