Redox potentials, Cell Diagrams and EMF. Hydrogen-Oxygen Fuel Cell.

AIM

We are learning to:

- write cell diagrams
- work out e.m.f. of a cell from Redox potentials
- combine half-equations to write an overall equation

QUESTION

Use the following data to write the cell diagram, work out the e.m.f. and write the overall equation for the reaction of a hydrogen-oxygen fuel cell in alkaline conditions.

Half-equation						
O2(g) +	4H+	(aq)	+ 4e ⁻	⇒	2H2O(l)	+1.23
O2(g) +	2H20	D(l)	$+4e^{-}$	⇒	4OH ⁻ (aq)	+0.40
2H ⁺ (aq)	+	2e-		⇒	H2(g)	0.00
2H2O(l)	+	2e-		⇒	$2OH(aq) + H_2(g)$	-0.83

Which half equations do we need?

Conventions

The more **Positive** electrode will proceed in the **Forward** direction...

...this is **Reduction** and goes on the **Right** in the cell diagram.

WORKING THROUGH THE EXAMPLE

$$O_2(g) + 2H_2O(l) + 4e^- = 4OH^-(aq) + 0.40V$$

 $2H_2O(1)$ + $2e^ \Rightarrow$ $2OH_-(aq) + H_2(g)$ -0.83V

"hydrogen and hydroxide become water" "oxygen and water become hydroxide"

$$Pt | [H_2(g) + 2OH(aq)], 2H_2O(I)$$
 $[O_2(g) + 2H_2O(I)], 4OH(aq) | Pt$

Pt |
$$[H_2(g) + 2OH^{-}(aq)]$$
, $2H_2O(I)$ || $[O_2(g) + 2H_2O(I)]$, $4OH^{-}(aq)$ | Pt

$$E.M.F =$$

To write out full equation, re-write with more negative electrode reversed

 $O_2(g) + 2H_2O(l) + 4e^- \Rightarrow 4OH^-(aq)$ $2OH_-(aq) + H_2(g) \Rightarrow 2H_2O(l) + 2e^-$

 $O_2(g) + 2H_2O(l) + 4OH_{-}(aq) + 2H_2(g) + 4e^- \Rightarrow 4OH_{-}(aq) + 4H_2O(l) + 4e^-$

 $O_2(g) + 2H_2(g) \Rightarrow + 2H_2O(l)$

SUMMARY

to write the cell diagram

1) the more **Positive** electrode will proceed in the **Forward** direction

this is **Reduction** and goes on the **Right** in the cell diagram

2) to write out the elecrodes

 $A(g) + B(I) + e^{-} \Rightarrow C(aq)$

<u>OX</u>	RED
read as "C becomes A and B"	read as "A and B become C"
write as Pt C(aq), [A(g) + B(l)]	write as [A(g) + B(l)], C(aq) Pt

ASSESSMENT

What would the cell diagram be for the cell with e.m.f. +0.62V which would occur if these two half cells were joined under standard conditions?

 $\begin{aligned} IO^{-}(aq) + H_2O(I) &= I^{-}(aq) + 2OH^{-}(aq) \\ CrO_{4^{2-}}(aq) + 4H_2O(I) &= Cr(OH)_3(s) + 5OH^{-}(aq) \\ E^{\circ} &= -0.13V \end{aligned}$

A Pt | $[CrO_{4^2}(aq) + 4H_2O(I)]$, $[Cr(OH)_3(s) + 5OH^-(aq)] || [I^-(aq) + 2OH^-(aq)]$, $[IO^-(aq) + H_2O(I)] |$ Pt

$$\label{eq:constraint} C \qquad Pt \mid [Cr(OH)_3(s) + 5OH^-(aq)], \ [CrO_4^2-(aq) + 4H_2O(l)] \mid | \ [I^-(aq) + 2OH^-(aq)], \ [IO^-(aq) + H_2O(l)] \mid Pt \mid [I^-(aq) + 2OH^-(aq)], \ [IO^-(aq) + H_2O(l)] \mid Pt \mid I^-(aq) + I^-(aq) \mid I^-(aq) + I^-(aq) \mid I^-(aq$$

ANSWER: D