Equilibrium: Hydrogen Iodide <u>≠</u> Hydrogen + Iodine

Question

0.58 mol of hydrogen iodide was heated and the following equilibrium established:

2HI (g)
$$I_2(g) + H_2(g)$$

The equilibrium mixture contained 0.040mol of hydrogen. Calculate K_c.

Expression for K_c and identify problem

$$K_c = [H_2] [I_2] / [HI]^2$$

...but we are only given the equilibrium amount of the H₂

Let's have a look at the data we're given...

		2HI (g)	\rightleftharpoons	I ₂ (g) +	$H_2(g)$
initial mol		0.58		0	0
equilibrium	mol			0.04	

Working through the example

By what amounts has each substance changed?

		2HI (g)	=	$I_2(g)$	+	$H_2(g)$
ratio		2	:	1	:	1
initial mol		0.58		0		0
change		-0.08		+0.04 +0.04		
equilibrium	mol	0.50		0.04		0.04

$$K_c = [H_2] [I_2] / [HI]^2$$
 $K_c = 0.04 \times 0.04 / 0.5^2$ $= 6.4 \times 10^{-3}$ (no units)

Conclusions

- 1) If the ratio of reactants & products is not 1:1 Change in number of moles must match the ratio
- 2) Kc is defined in terms of concentrations (mol / V) However, if the V terms cancel we do not need to know the actual volume

Assessment

Work out the equilibrium amounts:

Would you need the volume to work out K_c ?

Answers [A] = 0.3, [B] = 0.5, [C] = 0.2 $K_c = [C]^2/[A][B]$ volumes cancel