The Electrochemical Series

using standard electrode potentials

- 1. The Electrochemical Series
 - a. Right-hand electrode relative to hydrogen
 - b. REDOX behaviour
- 2. Using Standard Electrode Potentials
 - a. Proving $E^{o}_{cell} = E^{o}_{(right hand electrode)} E^{o}_{(left hand electrode)}$
 - b. Identifying reaction for which E^{o}_{cell} is +ve

Right-hand electrode relative to hydrogen

Standard conditions (1atm, 1moldm⁻³, standard states, 298K)

More commonly written in a table of reduction half-equations

-ve reverse (←)
$$Zn^{2+} + 2e^{-} \Rightarrow Zn -0.76$$

 $Ni^{2+} + 2e^{-} \Rightarrow Ni -0.25$
 $H^{+} + e^{-} \Rightarrow \frac{1}{2}H_{2} = 0$
 $Cu^{2+} + 2e^{-} \Rightarrow Cu +0.34$
 $Ag^{+} + e^{-} \Rightarrow Ag +0.80$
 $\frac{1}{2}Br_{2} + e^{-} \Rightarrow Br^{-} +1.09$
 $\frac{1}{2}Cl_{2} + e^{-} \Rightarrow Cl^{-} +1.38$ $electrons$

SIGN of E° indicates bias of equilibrium

The Electrochemical Series

using standard electrode potentials

- 1. The Electrochemical Series
 - a. Right-hand electrode relative to hydrogen
 - b. REDOX behaviour
- 2. Using Standard Electrode Potentials
 - a. Proving E^ocell = E^o(right hand electrode) E^o(left hand electrode)
 - b. Identifying reaction for which E^{o}_{cell} is +ve

Proving $E^{o}_{cell} = E^{o}_{(right \ hand \ electrode)} - E^{o}_{(left \ hand \ electrode)}$

: if an electrode is on the L.H.S., its e.m.f. is reversed

$$Zn, Zn^{2+} = -0.76V$$

$$e.m.f. = +0.34 + 0.76 = +1.10V$$

$$e.m.f. = -0.76 - 0.34 = -1.10V$$

$$\therefore E^{o}_{cell} = E^{o}_{(right hand electrode)} - E^{o}_{(left hand electrode)}$$

 $Cu^{2+} + 2e^{-} = Cu + 0.34$

The Electrochemical Series

using standard electrode potentials

- 1. The Electrochemical Series
 - a. Right-hand electrode relative to hydrogen
 - b. REDOX behaviour
- 2. Using Standard Electrode Potentials
 - a. Proving $E_{cell}^{o} = E_{(right hand electrode)}^{o} E_{(left hand electrode)}^{o}$
 - b. Identifying reaction for which Eocal is +ve

Identifying reaction for which Eocell is +ve Anticlockwise rule

positive electrode goes in the **forward** direction this is **reduction** and goes on the **right** of the cell

e.g. nickel and copper

$$Ni^{2+}$$
 + $2e^{-} \rightleftharpoons$ Ni -0.25
 Cu^{2+} + $2e^{-} \rightleftharpoons$ Cu +0.34

cell e.m.f. = R.H.S. - L.H.S.
=
$$+0.34 + 0.25$$

= $+0.59V$

Electrode				Eº/ V
Zn ²⁺	+ 2e-	=	Zn	-0.76
Ni ²⁺	+ 2e-	=	Ni	-0.25
H+	+ e-	=	½ H ₂	0
Cu ²⁺	+ 2e-	=	Cu	+0.34
Ag+	+ e-	=	Ag	+0.80
½ Br ₂	+ e-	=	Br-	+1.09
½ Cl ₂	+ e-	=	CI-	+1.38

+ve value indicates that the feasible reaction is $Cu^{2+} \rightarrow Cu$ and $Ni \rightarrow Ni^{2+}$

Identifying reaction for which Eocell is +ve Anticlockwise rule

positive electrode goes in the **forward** direction this is **reduction** and goes on the **right** of the cell

e.g. chlorine and bromine

cell e.m.f. = R.H.S. - L.H.S.
=
$$+1.38 - 1.09$$

= $+0.29V$

Electrode
$$E^{\circ}/V$$

½ $Br_2 + e^{-} = Br^{-} +1.09$

½ $Cl_2 + e^{-} = Cl^{-} +1.38$

The feasible, spontaneous reactions are

$$1/2 \text{ Cl}_2 + e^- \rightarrow \text{ Cl}^ Br^- \rightarrow 1/2 Br_2 + e^ 1/2 \text{ Cl}_2 + Br^- \rightarrow \text{ Cl}^- + 1/2 Br_2$$

References

Jim Clark, Calculations in AS/A Level Chemistry (2000). Pearson Education.

Nuffield Advanced Science, Book of Data (1984). Longman.