Acid Base Chemistry

- Foundation knowledge
- The pH scale
- 3. The pH of Water
- 4. Acids
 - a. Defining strong acids and weak acids
 - b. Strong acids
 - c. Weak acids
 - i. What makes a weak acid?
 - ii. How to calculate the pH of a weak acid
- 5. Bases
- Acid base titrations
- 7. Relative acidity and basicity competition for H+

We are learning to:

use

$$pH = -log[H^+]$$

...to calculate pH of

a)
$$0.1 \text{ moldm}^{-3} \text{ HCN}$$
 $K_a = 4.9 \times 10^{-10}$

$$K_a = 1.28 \times 10^{-10}$$

$$K_a = \frac{[H^+][A-]}{[HA]}$$

HA === H+ + A-

derive
$$[H^+] = \sqrt{K_a [HA]}$$

derive
$$[H^+] = \sqrt{K_a [HA]}$$

derive
$$[H^+] = \sqrt{K_a [HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

derive
$$[H^+] = \sqrt{K_a [HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_a = \frac{[H^+]^2}{[HA]}$$

derive
$$[H^+] = \sqrt{K_a [HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_a = \frac{[H^+]^2}{[HA]}$$

$$K_a [HA] = [H^+]^2$$

$$[H^+] = \sqrt{K_a [HA]}$$

We are learning to:

derive
$$[H^+] = \sqrt{K_a [HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_a = \frac{[H^+]^2}{[HA]}$$

$$K_a [HA] = [H^+]^2$$

$$[H^+] = \sqrt{K_a [HA]}$$

[HA] has dropped only very slightly

use original [HA]

Calculate pH of

a)
$$0.1 \text{ moldm}^{-3} \text{ HCN}$$
 $K_a = 4.9 \times 10^{-10}$

$$[H^+] = \sqrt{K_a [HA]}$$

[H+] =
$$\sqrt{4.9 \times 10^{-10} \times 0.1}$$

$$pH = -log[H^+]$$

$$pH = -log 7 \times 10^{-6}$$

Calculate pH of

$$K_a = 1.28 \times 10^{-10}$$

$$[H^+] = \int K_a [HA]$$

$$pH = -log[H^+]$$

$$[H^+] = \int 1.28 \times 10^{-10} \times 0.05$$

$$pH = -log 2.53 \times 10^{-6}$$